
Journal of Intellectual Property Journal of Intellectual Property

Law Law

Volume 7 Issue 1 Article 5

March 1999

Java: An Innovation in Software Development and a Dilemma in Java: An Innovation in Software Development and a Dilemma in

Copyright Law Copyright Law

Michael P. Doerr

Follow this and additional works at: https://digitalcommons.law.uga.edu/jipl

 Part of the First Amendment Commons, and the Intellectual Property Law Commons

Recommended Citation Recommended Citation
Michael P. Doerr, Java: An Innovation in Software Development and a Dilemma in Copyright Law, 7 J.
INTELL. PROP. L. 127 (1999).
Available at: https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

This Notes is brought to you for free and open access by Digital Commons @ University of Georgia School of Law.
It has been accepted for inclusion in Journal of Intellectual Property Law by an authorized editor of Digital
Commons @ University of Georgia School of Law. Please share how you have benefited from this access For more
information, please contact tstriepe@uga.edu.

http://www.law.uga.edu/
http://www.law.uga.edu/
https://digitalcommons.law.uga.edu/jipl
https://digitalcommons.law.uga.edu/jipl
https://digitalcommons.law.uga.edu/jipl/vol7
https://digitalcommons.law.uga.edu/jipl/vol7/iss1
https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5
https://digitalcommons.law.uga.edu/jipl?utm_source=digitalcommons.law.uga.edu%2Fjipl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1115?utm_source=digitalcommons.law.uga.edu%2Fjipl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/896?utm_source=digitalcommons.law.uga.edu%2Fjipl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5?utm_source=digitalcommons.law.uga.edu%2Fjipl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/forms/d/e/1FAIpQLSc_7JxpD4JNSJyX6RwtrWT9ZyH0ZZhUyG3XrFAJV-kf1AGk6g/viewform
mailto:tstriepe@uga.edu

JAVA: AN INNOVATION IN SOFTWARE
DEVELOPMENT AND A DILEMMA IN
COPYRIGHT LAW

I. INTRODUCTION

The introduction of Java software development technology by Sun
Microsystems, Inc. (Sun) raises new issues in an already unsettled and
confusing area of law: the copyrightability of computer programming
languages. In 1980, Congress adopted the recommendations of the National
Commission on New Technological Uses of Copyrighted Works (CONTU)
and passed legislation defining computer programs as copyrightable subject
matter.' However, no mention was made about the copyrightability of the
computer programming languages used to write computer software. No
court has explicitly ruled on the issue of whether copyright protection
subsists in a computer programming language.2 Academics have argued both
for and against extending copyright protection to computer programming
languages.3 The development of Java makes this unsettled issue more
interesting, important, and complex.

Java was developed by Sun, who describes the technology as "a
standardized application programming environment that affords software
developers the opportunity to create and distribute a single version of

Copyright protection subsists in "literary works." 17 U.S.C. § 102(a)(1) (1994). Computer

programs are classified as literary works for copyright purposes. H.R. REP. NO. 94-1476, at 54 (1976).
2 But see Lotus Dev. Corp. v. Paperback Software Int'l, Inc., 740 F. Supp. 37, 72, 15 U.S.P.Q.2d

(BNA) 1577, 1602 (D. Mass. 1990) (criticizing, in dicta, the argument that computer programming
languages are uncopyrightable subject matter).

' For arguments supporting copyrightability of computer programming languages, see generally
Ronald Johnson & Allen Grogan, Copyright Protection for Command Driven Interfaces, 8:6 COMPUTER
L. 1 (1991). For arguments against the copyrightability of computer programming languages, see generally
Marci A. Hamilton & Ted Sabety, Computer Science Concepts in Copyright Cases: The Path to a Coherent
Law, 10 HARV. J.L. & TECH. 239 (1997); Elizabeth G. Lowry, Copyright Protection for Computer
Languages: Creative Incentive or Technological Threat?, 39 EMORY L.J. 1293 (1990); Steve Posner, Can a
Computer Language Be Copyrighted? The State of Confusion in Computer Copyright Law, 11
COMPUTER/L.J. 97 (1991); Richard H. Stern, Copyright in Computer Programming Languages, 17
RUTGERS COMPUTER & TECH. L.J. 321 (1991).

1

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

programming code that is capable of operating on many different, otherwise
incompatible systems platforms and browsers. "'

This Note will examine how Java works, how it has changed the
computer science industry, and how it affects the debate over the
copyrightability of programming languages. We will first consider how
traditional programming languages operate and how Java has changed the
traditional framework. To facilitate a clear understanding of the copyright
issues involved, we will consider a hypothetical involving a copier who has
used the exact Java programming language specification without copying
Sun's literal code. We will use this hypothetical to explore Sun's claim
against the copier for infringement of the copyright in the actual language,
if any such infringement has occurred. In doing so, we will examine the
arguments for and against allowing copyright protection to subsist in a
programming language by itself. We will then consider Sun's claim against
the hypothetical copier for infringement of the copyright in the computer
software programs that utilize the Java languages. Finally, we will examine
the law surrounding the extension of copyright protection to non-literal
elements of a computer program and whether copyright protection could be
extended to give Sun copyright-like protection in the Java language.

II. BACKGROUND AND TECHNICAL OVERVIEW OF JAVA

A. THE COMPUTER SCIENCE WORLD BEFORE JAVA

The allure of Java is its ability to be platform independent. To understand
what platform independent means, we will discuss what made other
programming languages platform dependent.

First, what is a platform? The simple answer is that a platform is just a
type of computer environment. For example, the most well-known
platforms are currently the PC, or Windows platform, and the Macintosh
platform. Unix and Linux are also platforms used today. What makes these
platforms different are the different instruction sets they use. Computers
operate on instructions in the form of binary strings, or strings of ones and

Sun Microsystems, Inc.,Memorandum ofPoints &Authority (visited Oct. 11, 1998) <http://www.
java.sun.com/lawsuit/counterclaimdoc2.html >.

[Vol. 7:127

2

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILITY

zeroes called the machine language.' This is the most basic language in which
the computer communicates.6 Each instruction for the computer
corresponds to a specific string of ones and zeroes. In each environment
there are a vast number of different instructions, or binary strings, that the
computer will recognize. This vast number of recognizable instructions
constitutes that platform's instruction set. What makes platforms different
from one another is the form of' their instruction sets. Each platform's
instruction set is comprised of a different number and type of instructions.

Computer programmers formerly wrote computer programs directly in
machine language,' but now they communicate with computers using
computer programming languages. Examples of pre-Java, or traditional,
computer programming languages are C, C + +, Pascal, and FORTRAN.
Programmers write a program in a given programming language and save it
into a basic text file (just like a text file used to save a letter written to a
friend). This text file is called the sourcefile A program called a compiler
then converts the text file into an object file,9 or a file of binary machine
language instructions. The object file contains the computer program in its
machine language form; it is a file consisting of strings of ones and zeroes.
Each string of ones and zeros corresponds to an instruction in the
computer's machine language instruction set and instructs the computer to
take some action. Thus, the compiler takes, as input, the textual source file
and produces, as output, the machine language object file. This object file is
platform-specific. It contains instructions out of a specific platform's
instruction set. Therefore, an object file for a program written for the
Windows platform will not run on a Macintosh computer and vice-versa.

A different compiler is therefore needed for each platform. A software
developer wishing to create and develop a program that would run on all
platforms would have to develop, compile, and create an object file for each

' HARREY M. DEITEL & PATRICK J. DEITEL, C + + How TO PROGRAM 8 (1994); JERI R. HANLY
ET AL., PROBLEM SOLVING AND PROGRAM DESIGN IN C 17 (1993); ROBERT P. MERGES ET AL.,
INTELLECTUAL PROPERTY IN THE NEW TECHNOLOGICAL AGE 836 (1997).

6 DEITEL & DEITEL, supra note 5, at 8; HANLY ET AL., supra note 5, at 17; MERGES ET AL., supra
note 5, at 836.

' Programmers would encode a list of instructions, or a list of ones and zeroes, onto punch cards,
insert the punch cards into the punch card reader, and then start the computer working on the punch
cards. The punch card and punch card readers simply allowed the programmer to communicate directly
with the computer, albeit in the computer's native machine language.

HANLY ET AL., supra note 5, at 17.
' Id at 19.

1999]

3

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

. INTELL. PROP. L.

platform. He would then have to transfer, or port, his source files over to
the other platforms, and recompile them on those platforms to get object
files specific to those platforms. This process was used in the past and was
expensive and troublesome for software developers. Thus, many software
developers opted to make their programs available on only one platform.

A way to write a program once and have it run on any platform was
needed. As Sun stated:

[t]he existence of multiple, platform-dependent
systems, each implementing different incompatible
programming environments, confronts software
developers with a Hobson's choice: either they must
develop and support different versions of each
program for each different systems platform, or they
must pick and choose among the many different
possible systems platforms the one or more
environments for which they will develop and
support a version of their programs. Obviously, a
better choice would be to develop a single program
version that could run on all platforms without
modification.0

B. HOW JAVA CHANGED COMPUTING: WRITE ONCE, RUN ANYWHERE

Sun, in developing Java, added a new layer to the traditional sequence of
events in the life of a computer program. This new layer was called the Java
bytecode interpreter, otherwise known as the Java VirtualMachine." We will
start from the beginning of the programming life of a computer program
written in Java.

First, as with the traditional method, the programmer writes his program
in the high-level Java language, which is very similar to a program written
in C or C + + in terms of the words used and the structure of the actual lines

10 Sun Microsystems, Inc., supra note 4.
" LAURA LEMAY ET AL., TEACH YOURSELF JAVA IN 21 DAYS 9 (1996).

[Vol. 7:127

4

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

1AVA COPYRIGHTABILITY

of code. 2 The finished text file containing the high-level Java code is called
a Java source file, similar to the traditional source file.

Next, the Java Compiler is run on the source files, but instead of
producing machine language specific to one machine, as in the case of the
traditional compiler, it generates Java bytecodes. 3 Bytecodes look similar to
machine language, but are not specific to any one machine. 4 They are only
specific to the Java Virtual Machine." Now, the Java program, in its
compiled bytecode form, may be run on any Java Virtual Machine.

The Java Virtual Machine is a computer program that takes the compiled
Java bytecodes as input and carries out the bytecode instructions on a specific
machine, with a different Java Virtual Machine program for each platform.
For example, in the Java object code file there may be an instruction to add
two numbers. The add instruction in the Java object file would be in Java
bytecode format. When the Virtual Machine comes to the bytecode
instruction for the add instruction, it simply tells the platform's operating
system to carry out the add instruction. The Virtual Machine takes the
generic Java bytecode instructions and interprets them into the specific
machine language instructions for that particular platform. For this reason
the Java Virtual Machine is sometimes referred to as an interpreter.6 It
interprets the Java bytecodes into corresponding machine language
instructions. Thus, the same Java object file can be run on any platform that
supports the Java Virtual Machine. Currently all major platforms support
the Java Virtual Machine. A software developer can now write a program,
compile it into a Java object file, place it on the Internet, and be confident
that anyone can download it and run it on their specific platform.

Java Virtual Machines are also written for most Internet browsers
themselves. An Internet browser that is capable of running Java object files
is Java enabled. This means that a software developer can put his Java object
files on the Internet and a user can run the program inside their browser,
without downloading the program to their computer.

12 Id at II (stating that "Java is modeled after C and C+ +, and much of the syntax and object-

oriented structure is borrowed from the latter... If you are familiar with C+ +, learning Java will be
particularly easy for you because you have most of the foundation already").

13 Id
14 Id.
15 Id
'6 LEMAY ET AL., supra note 11, at 9.

1999]

5

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

. INTELL. PROP. L.

This technology has had a huge impact on the software industry. No
longer must developers choose which platform to develop their software on;
nor must they incur the expenses of porting their finished product to other
platforms. With Java, developers simply write a program once and run it
anywhere. As one commentator has stated:

[a] Java executable [compiled program code] written
for one computer can be run, without modification,
on another computer supporting Java. The other
computer does not need the corresponding source
code to accomplish this feat; porting is automatic and
virtually instantaneous. This means that users
owning entirely different types of computers can
download a Java executable from a server and run
that executable on their systems and expect an
identical result ... The capability of downloading a
program and executing it in a variety of computers is
expected to lead to entirely new kinds of application
programs. This is the true magic ofJA VA.' 7

H. COPYRIGHT ISSUES

Java's ability to facilitate platform-independence makes the issue of
copyrightability more complex. When considering copyright protection,
one must examine the copyrightability of the traditional high-level Java
programming language, just as one would in analyzing copyrightability of
a traditional programming language. But with Java one must also consider
the copyrightability of Java bytecodes, an element not present in traditional
programming languages.

We will use a hypothetical to clarify the copyright issues related to
programming languages and how these issues are affected by the innovations
of the Java technology. First, we will set forth the specifics of the proposed
infringer. We will then examine two of Sun's possible claims against this
infringer: first, a claim for infringement of Sun's copyright in the language

' Sun Microsystems, Inc., supra note 4 (quoting GILBERT & McCARTY, OBJECT-ORIENTED
PROGRAMMING INJAVA 50 (1997)).

[Vol. 7:127

6

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILITY

itself, and second, a claim for infringement of Sun's copyright in the software
that utilizes the language.

A. THE HYPOTHETICAL INFRINGER

To discuss copyright issues related to Java, we must visualize an infringer
who has copied the Java language, without authorization, and developed a
new Java compiler. The new compiler would be a computer program
developed without copying any literal code from Sun's compiler. The
compiler would take Java source code files as input and produce Java object
files as output, just as Sun's Java Compiler would. Object files created by the
new compiler would run on Sun's Virtual Machine. Thus, the infringer
would have successfully utilized the high-level Java programming language
and Java bytecodes without literally copying any of Sun's source code.

First, how would this be done? To construct his own Java compiler, the
infringer would have to study simple Java source code fragments alongside
the Java bytecode files produced by running Sun's Java Compiler on the
simple source code fragment."

Second, why would anyone want to do this? Why wouldn't the infringer
just want to develop his own platform-independent programming language
like Java, but which utilized a different source code language as input and
produced a different bytecode object file as output? The answer is
compatibility. The infringer's completely new system would lack
compatibility with Java, thus making it unlikely that developers would
switch from the established Java system to the infringer's new system
without some incentive to do so. The computer industry would be wary of
embracing a new platform-independent computer programming language for
fear of reverting back to the pre-Java state of the industry: incompatible
platforms running incompatible code. Thus, if one was to develop a Java-

" For purposes of this Note we will not consider whether this process of reverse engineering

constitutes infringement of Sun's copyrights in its Compiler and Virtual Machine software. In other
words, we will not consider whether the infringer's compiler and virtual machine, being developed in this
manner, infringe Sun's copyright in its own Compiler and Virtual Machine. We will simply consider
whether Sun has a valid copyright in the language itself and whether the infringer, by using the language
in his own software, has infringed that copyright. For more on the issue of reverse engineering of
computer software, see Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527-28, 24 U.S.P.Q.2d (BNA)
1561, 1574 (9th Cir. 1992) (holding that "where disassembly is the only way to gain access to the ideas and
functional elements embodied in a copyrighted computer program and where there is a legitimate reason
for seeking such access, disassembly is a fair use of the copyrighted work, as a matter of law").

1999]

7

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

like system of software, it would likely be accepted only if it was completely
compatible with Sun's Java language.

There are two distinct incentives for our proposed copier, which relate
to the two levels of the Java language. First, the copier has an incentive to
use the same specification as the high-level Java programming language so
that programmers who have already learned Java could easily switch to his
"new" language without having to learn a new language. This type of
incentive is common among computer copyright cases.' 9 Indeed, it has
generally affected companies developing new compilers for traditional
programming languages. If a new company wanted to develop its own C or
C + + compiler, the programming language utilized by its compiler would
be nearly identical to the C or C + + programming language utilized by
another company's compiler. As a result, many companies would develop
their own compiler for a single language, with only subtle differences
between the languages. Thus, a programmer who learned C on Borland's
compiler would not have to relearn the language if he switched to a Unix
compiler.

The second incentive is more important to the success of the copier's new
language. The copier must make sure that his new compiler produces, as
output, object files consisting of Java bytecodes that will run perfectly on
Sun's Virtual Machine. In this way, any program developed with his new
compiler would be as platform-independent as a program developed using
Sun's own Java Compiler. He would thus be able to tap into the platform-
independence of Java. The incentive for a copier to develop his new
language system to be compatible with Sun's Java bytecodes did not exist
with previous programming languages, because compilers written for these
traditional languages compiled the source code files directly into machine
language. Java, on the other hand, compiles source code into bytecodes to
be utilized by another program, the Virtual Machine, which then turns the
bytecodes into machine language. Because traditional languages did not have
this extra layer of bytecode interpretation, there was no reason to worry
about the various compiler outputs being compatible.

19 See, e.g., Lotus Dev. Corp. v. Borland Int'l, Inc., 49 F.3d 807, 34 U.S.P.Q.2d (BNA) 1014 (1st Cir.
1995), afl'd by an equally divided Court, 516 U.S. 233 (1996) (defendant copied entire command hierarchy
from plaintiff's spreadsheet program so that users of plaintiff's program could more easily switch to
defendant's program).

[Vol. 7:127

8

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILITY

For purposes of discussion, we will assume our infringer has created a
compiler that accepts, as input, a source code file written in the high-level
Java programming language developed by Sun. This compiler produces, as
output, a bytecode object file that will run on Sun's Virtual Machine. We
will further assume that all of this has been done without literally copying
any of Sun's source or object code.2"

The focus of the rest of this Note will be on whether Sun could
successfully claim that the hypothetical copier has infringed its copyright in
the Java computer programming language. We will examine two arguments
regarding this issue. First, we will consider whether copyright protection
can be claimed for the language itself, without reference to the software that
utilizes the language. Second, we will consider whether copyright protection
extends to programs using the language, i.e., the Compiler and the Virtual
Machine. Before considering arguments regarding copyrightability, we will
look at why the copyrightability of Java as a programming language is
particularly intriguing.

B. WHAT MAKES JAVA DIFFERENT WITH REGARD TO COPYRIGHT?

The copyrightability of the Java programming language is unique because
it has two components, whereas traditional languages have only one. Both
Java and the traditional languages have the high-level, pseudo-english
component that programmers actually use to write code, but only Java has
bytecodes, enabling it to be platform-independent. Thus, in the traditional
language setting, one would consider only the copyrightability of the high-
level language. With Java, one must consider the copyrightability of the
high-level language as well as the copyrightability of the bytecode language.
This prospect may lead to some interesting results. For example, if the high-
level Java language is copyrightable and the bytecode language is not, then
a copier's use of the high-level language in the compiler would be
infringement. However, he could develop another high-level programming
language, dissimilar to the Java language, that would compile into the same
bytecodes. The copier's new language would, therefore, be platform-

25 The hypothetical situation considered in this Note is different from the issue to be resolved in Sun

Microsystems, Inc. v. Microsoft Corp., No. C97-20884 PVT (N.D. Cal. filed Oct. 7, 1997). For a
summary of the issues presented in that case and the possibility of the issue of copyrightability of
programming languages arising, see infra Appendix I.

1999]

9

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

independent like Java. On the other hand, if bytecodes are copyrightable,
then the copier would not be able to tap into the platform-independence of
Java and his new language would not be as enticing to software developers.

C. COPYRIGHT IN A PROGRAMMING LANGUAGE GENERALLY

No court has directly ruled on the issue of copyrightability of a high-level
computer programming language like Java.21 However, courts have ruled on
the copyrightability of items which-share some characteristics with computer
programming languages.22 Further, a Massachusetts district court has
considered the argument and has stated in dicta that there is no reason why
a programming language could never be copyrightable.23 There is much
disagreement in the academic world on this issue: commentators have argued
both for and against allowing copyright protection in a computer
programming language.24

This part will first examine the decision in Lotus Development Corp. v.
Paperback Software International, Inc.25 Consideration will then be given to
each of the requirements of the Copyright Act (fixation, originality, and
expression rather than idea) with regard to Java. Lastly, the First
Amendment and public policy rationales used to argue against copyright
protection for programming languages will be discussed.

1. Lotus Development Corp. v. Paperback Software International, Inc.26

At issue in Paperback Software International, Inc. was the defendant's use of
the plaintiff's command hierarchy in a spreadsheet program. The defendant,
like the defendant in our hypothetical, did not copy the plaintiff's literal
code. Thus, it was not a case of literal infringement. Instead, the defendant
used the same input commands as were utilized by the plaintiff's program.
For example, users of both programs could enter the command "/FR" to

21 Hamilton & Sabety, supra note 3, at n.113.
2 See, e.g., Reiss v. National Quotations Bureau, 276 F. Supp. 717 (S.D.N.Y. 1921) (holding that a list

of meaningless words is copyrightable subject matter).
z" Lotus Dev. Corp. v. Paperback Software Int'l, Inc., 740 F. Supp. 37, 72-73, 15 U.S.P.Q.2d (BNA)

1577, 1603 (D. Mass. 1990).
2" For arguments for the copyrightability of programming languages, see generally Johnson &

Grogan, supra note 3. For arguments against the copyrightability of computer programming languages,
see generally Hamilton & Sabety, supra note 3; Lowry, supra note 3; Posner, supra note 3; Stern, supra
note 3.

25 740 F. Supp. 37, 15 U.S.P.Q.2d (BNA) 1577 (D. Mass. 1990).
26 Id

[Vol. 7:127

10

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

1A VA COPYRIGHTABILI7Y

execute the file retrieval command.27 The court explicitly stated that it did
not consider these input commands to be a programming language and thus
avoided the issue of whether programming languages are copyrightable
subject matter.28 Instead, the court held that the plaintiff's commands
constituted a non-literal aspect of the program and that the plaintiff's
copyright in the program itself extended to this non-literal element.29

Therefore, the defendant had infringed the plaintiff's copyright in the
software by copying this non-literal element.30 But in a section at the end of
the opinion titled "Strained Analogies and Word Games," the court
considered, in dicta, the defendant's argument that the commands
constituted an uncopyrightable "programming language" and that use of this
programming language could therefore not be infringement.31 The court
summarized the argument as follows:

(1) Although expression is copyrightable, the language
in which the expression is written is not
copyrightable. Thus, a book written in English or
French may be copyrightable, but the English and
French "languages" are not works in which copyright
may subsist.
(2) Like books, computer programs, written in
computer programming "languages," may be
copyrightable, but only the "sets of statements or
instructions," and not the "language" in which they
are written, are copyrightable....
(5) The macro, or "program," that the user writes
may be copyrightable if original and nonobvious.
The "language" in which the macro is written is never
copyrightable.

27 See Stern, supra note 3, at 326 (using this example).
28 740 F. Supp. at 68-70.
29 Idl at 70.

0 For discussion of copyright protection for non-literal elements of a program, see infra Part Ifl.D.
A finding that the copyright in the program itself extends to non-literal elements affords copyright-like
protection to those elements but is doctrinally different from a finding that the non-literal elements are
themselves copyrightable.

" Lotus Dev. Corp. v. Paperback Software Int'l, Inc., 740 F. Supp. 37, 70-72, 15 U.S.P.Q.2d (BNA)
1577, 1602-03 (D. Mass. 1990).

1999]

11

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

. INTELL. PROP. L.

(6) Thus, when defendants copied the menu
command hierarchy from 1-2-3, they did not copy a
copyrightable element that embodied expression, but
rather, copied only the "macro facility language" of 1-
2-3, a non-copyrightable element in the public
domain.32

Further, the court addressed three corollaries to the defendant's argument.
First, the argument assumes that the word "language" has a "single, invariable
meaning in all discourse about 'languages.' "" Second, the argument assumes
not only that English and French are uncopyrightable as languages, but also
that all languages are automatically ineligible for copyright.34 The court
noted that this argument was without authoritative support. Third, the
argument assumes that "languages" and "sets of statements or instructions"
are opposites and "never the twain shall meet."35 The court stated that this
argument was without merit and that it depended on "arbitrary definitions
of words, adopted for undisclosed reasons."36 The court also found this
argument to be a hindrance to the court's function:

[a]n argument that depends on the proponents'
undisclosed definitions of words-and even different
definitions as a word is used in different steps of the
argument-becomes a word game that obscures the
substantive meaning of the argument and is an
obstruction rather than an aid to the court's use of the
adversary process to inform and thus improve
decision-making. 7

Thus, the court, while basing its finding of infringement on other
grounds, took the opportunity to lash out at the argument that programming
languages are per se uncopyrightable. While not offering much precedential

32 Id at 72.
33 Id
34 Id.
35 Id
36 Lotus Dev. Corp. v. Paperback Software Int'l, Inc., 740 F. Supp. 37, 72, 15 U.S.P.Q.2d (BNA)

1577, 1603 (D. Mass. 1990).
31 Id at 72.

[Vol. 7:127

12

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILITY

support for the proposition that programming languages are copyrightable,
the court clearly left the issue open.

2. Copyright Act Elements.
a. Fixation. In order for material to be copyrightable under the

Copyright Act of 1976, it must be "fixed in any tangible medium of
expression, now known or later developed, from which [it] can be perceived,
reproduced, or otherwise communicated, either directly or with the aid of
a machine or device."" Congress has elaborated on this requirement:

[u]nder the bill it makes no difference what the form,
manner, or medium of fixation may-be whether it is
in words, numbers, notes, sounds, pictures, or any
other graphic or symbolic indicia, whether embodied
in a physical object in written, printed, photographic,
sculptural, punched, magnetic, or any other stable
form, and whether it is capable of perception directly
or by means of any machine or device "now known
or later developed."39

Programming languages are "fixed" in the computer program that utilizes
them or embodies them; Java is fixed in the Java Compiler and Virtual
Machine. The exact specification is embedded into the actual software that
recognizes the language.

But is this fixation for section 102 purposes? The academics disagree. For
example, one commentator concludes that this "fixation" is enough:

[a]ll computer languages meet this requirement
because they are embodied in computer programs.
The program, stored on a diskette or other tangible
medium, defines the computer language which it
translates or requires for interaction with it. The user
can perceive the computer language "with the aid of
a machine," the computer. Thus, a computer
language meets the copyright fixation requirement.40

17 U.S.C. S 102(a) (1994).

H.R. REP. No. 94-1476, at 52 (1976).
'o Lowry, supra note 3, at 1308-09.

1999]

13

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

. INTELL. PROP. L.

On the other hand, Hamilton and Sabety argue that in order for a
programming language to be "fixed in a tangible medium," the author would
have to create one of two things.4 First, the author could create "a list of all
possible sentences in that language."42 This would be nearly impossible, as
languages may have an unbounded number of possible sentences.43 Second,
the author could give an expression of its specification.' However, the
specification only tells us whether a given sentence is part of the language or
not, and is not a fixation of any given sentence.4"

In the Java context, Hamilton and Sabety's argument only applies to the
high-level Java programming language because the Java bytecodes are finite.
They could easily be listed in their entirety, and there is no separate grammar
or set of rules to apply to build sentences out of them. They are simply a list
of commands that the Java Virtual Machine will recognize. Of course, for
the bytecodes to produce any meaningful output, they have to be in a
meaningful order. But this order is not intrinsic to the language itself, as
with a grammar. It is up to the programmer to organize the high-level
program text in a manner that will allow the Compiler to produce bytecodes
that will yield meaningful, useful output. A random assortment of bytecode
instructions will produce an output, just not a meaningful output. Thus,
although order is important for the usefulness of the language, there is not
an intrinsic bytecode grammar as with the high-level Java language.

Further, Hamilton and Sabety's argument presupposes that in order for
a programming language to be fixed, all of the possible sentences that could
be formed using the language must also be fixed. This requirement finds no
basis in the Copyright Act. Admittedly, the drafters of the Copyright Act
likely did not contemplate fixation of a programming language, but the Act's
most logical application to programming languages would be to require that
a copyright-seeker fix only that for which he would like to obtain copyright
protection.

"' Hamilton & Sabety, supra note 3, at 269.
42 Id
43 Id
' A specification is a term referring to the mathematical way in which a programming language is

defined. The specification is the quadruple (V, E, R, S) where V is the entire set of symbols used by the
language, E is the set of all terminal symbols, R is the finite set of grammatical rules that transform non-
terminal symbols into constituent terminal and non-terminal symbols, and S is the start symbol that tells
the computer there is a sentence to parse. Hamilton & Sabety, supra note 3, at 266.

45 Id

[Vol. 7:127

14

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILITY

Hamilton and Sabety also assume that anyone seeking copyright
protection would be seeking protection not only for the language, but also
for any expressions made in that language. For example, Hamilton and
Sabety state that "language copyright is doctrinally suspect because that
would provide copyright protection for expressions not yet fixed."46 If one
wished to obtain copyright protection for every expression. made in a
programming language, then one would have to either list all possible
expressions or list the specification of the language, as Hamilton and Sabety
suggest. However, if one wished only to obtain copyright protection for the
language itself, one should be able to fulfill the fixation requirement by
simply fixing the language and the grammar rules for the language in a
computer program utilizing the language.

A rule that would require a copyright-seeker to fixate all possible
expressions in the language would be unduly harsh. The most logical
application of the fixation requirement would be to require fixation only of
the language if that is all the copyright-seeker wishes to protect. Thus, the
fixation requirement of the Copyright Act should be deemed fulfilled where
the language is embodied in the software that utilizes the language.

b. Originality. The 1976 Copyright Act provides that "[c]opyright
protection subsists, in accordance with this title, in original works of
authorship."47 A programming language is sufficiently original to fulfill this
requirement.48 This standard requires little creativity because the author does
not need to show "novelty, ingenuity, or aesthetic merit."49

However, some trouble may arise because computer languages generally
build on predecessor languages. For example, the high-level Java
programming language was modeled after the C and C + + programming
languages."0 A court would have to determine which elements of the new
language were created by Sun and which elements were derived solely from
C or C + +. "Hence, while a computer language in all likelihood meets the
originality standard, its developer may have difficulty establishing which
elements of the language are original and which are copied from a preexisting
language."51 Note that this public domain problem will only arise regarding

Id at 269.
'7 17 U.S.C. S 102(a) (1994).
48 Lowry, supra note 3, at 1306-08.

" See 17 U.S.C.A. 5 102 (1996) (for accompanying legislative history).
'o LEMAYETAL., supra note 11, at 11.
" Lowry, supra note 3, at 1308.

1999)

15

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

the copyrightability of the high-level language component of Java. The
problem will not arise at the Java bytecode level, since the Java bytecodes
were an innovation by Sun.

c. Idea/Expression Dichotomy. Copyright protection will not subsist
in ideas but only in the expression of those ideas. This is made clear in
section 102(b) of the Copyright Act:

in no case does copyright protection for an original
work of authorship extend to any idea, procedure,
process, system, method of operation, concept,
principle, or discovery, regardless of the form in
which it is described, explained, illustrated, or
embodied in such work. 2

The idea/expression dichotomy was dealt with in the early case of Baker
v. Selden."3 There, the Supreme Court's holding explained this proposition:

[t]he copyright of a work on mathematical science
cannot give to the author an exclusive right to the
methods of operation which he propounds, or to the
diagrams which he employs to explain them... The
very object of publishing a book on science or the
useful arts is to communicate to the world the useful
knowledge which it contains. But this object would
be frustrated if the knowledge could not be used
without incurring the guilt of piracy of the book...
The description of the art in a book, though entitled
to the benefit of copyright, lays no foundation for an
exclusive claim to the art itself54

The problem is that the high-level Java language, like the accounting
system in Baker, is similar to a mere system. The language is a set of
symbols, accompanied by grammar rules for building those symbols into
sentences that will be recognizable by the Compiler. One commentator has

52 17 U.S.C. S 102(b) (1994).
13 101 U.S. 99 (1879).

' Id. at 103-05 (emphasis added).

[Vol. 7:127

16

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILI7Y

described this problem as follows: "a computer language is a system of
vocabulary and grammar rules. When the operator correctly applies the
grammar rules to the vocabulary, the system works: he creates a program.
If he does not follow the rules correctly, the program fails.""5

.Thus, under section 102(b) of the Copyright Act, the high-level Java
language may not be copyrightable because it may too closely resemble a
system. However, not all of this level of Java is a system because there are
symbols used in the language. Nevertheless, a court may find that the
copyrightable elements have merged into the idea, thus precluding copyright
protection.

5 6

Applying the idea/expression dichotomy to the Java bytecodes yields a
different result. The Java bytecodes are not a combination of symbols and
of rules to be applied to those symbols. They are simply a list of instruction
codes that the Virtual Machine will recognize. Unlike the accounting system
in Baker, the Java bytecodes do not constitute a system or means of doing
something. Although the instructions need to be arranged in a meaningful
order to produce meaningful output, the order is not intrinsic to the
bytecodes. Unordered bytecodes are still valid and will still run on the Java
Virtual Machine; they will just not produce meaningful output. Therefore,
the bytecodes would seem to be copyrightable expression rather than an
uncopyrightable system.

The bytecodes are akin to the compilation of coined words having no
known meaning held to be copyrightable in Reiss v. National Quotation
Bureau, Inc." In an opinion by Judge Learned Hand, the court held that a
group of words, having only an agreed meaning for purposes of cable
correspondence, were copyrightable. Hand likened the plaintiff's group of
words to "a set of words or symbols to form a new abstract speech, with
inflection, but as yet with no meaning, a kind of blank Esperanto." 8 Hand
later analogized the plaintiff's symbols to the language of math:

" Lowry, supra note 3, at 1311; see also Posner, supra note 3, at 106-07 (stating that a computer
language is an uncopyrightable set of rules).

6 See Lowry, supra note 3, at 1312 (arguing that the words which constitute part of a language are

an integral part of the system, i.e. the programming language, and therefore cannot be separated from the
system).

5' 276 F. 717 (S.D.N.Y. 1921).
" Id at 718.

1999]

17

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

[m]athematics has its symbols, indeed a language of its
own, Peanese, understood by only a few people in the
world. Suppose a mathematician were to devise a
new set of compressed and more abstract symbols,
and left them for some conventional meaning to be
filled in. Still we should not be quite at the plaintiff's
words, but again we should not be far away. The
distinction is real, but for practical purposes seems to
me irrelevant.5 9

Hand envisioned the copyrightability of an invented "language," similar to
Sun's Java bytecodes. Thus, the bytecodes are expression deserving of
copyright protection.

3. First Amendment and Public Policy Concerns. Some commentators
have raised objections to the copyrightability of programming languages
apart from the elements of the Copyright Act. We will first consider the
argument that copyright protection of a programming language would
violate the First Amendment. Second, we will consider the argument that
copyright protection in a programming language would violate public policy.

Commentators have argued that allowing copyright protection for
programming languages would violate the First Amendment. For example,
Hamilton and Sabety feel that such copyright protection would inhibit
expression even before it has the chance to develop:

[b]y authorizing protection for languages, the Act
would be authorizing prior restraint of any expression
in that language [Copyright law] exceeds First
Amendment boundaries when it permits authors to
own the rights to form any expression from the
building blocks of language. Indeed, protection of
linguistic building blocks impedes the progress of
originality sanctioned by the Copyright Clause in
addition to violating the First Amendment rule

[Vol. 7:127

18

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILI7Y

against suppressing speech before it has been
expressed? °

Hamilton and Sabety's argument assumes that the copyright-seeker
wishes to obtain copyright protection for all expressions written in the
language, but this assumption has no basis in law or in reality. Sun does not
wish to control the writing of programs in its language. Instead, Sun wants
as many people as possible to be programming in Java. Sun only wants to
prevent other companies from using its language in the other's compiler and
virtual machine, as in our hypothetical.

When considering the hypothetical defendant's argument that granting
copyright protection would violate the First Amendment, a court would
likely find that Sun is not suing to stop expression in the language, but is
instead suing because of the use of the language in the defendant's software.
It would be difficult for a court to rule that the language should be deemed
uncopyrightable because of First Amendment concerns when the defendant
cannot claim that his First Amendment rights have been violated.

Policy issues regarding copyright protection of programming languages
have also arisen. 6' It has been argued that "[p]rotection would inhibit
technological development, create monopoly pricing, and prevent
standardization of languages."62 Likewise, it has been argued that protection
is not needed to give developers the creative incentive to produce
programming languages.

These concerns, although providing support for the non-protection of
languages in general, lose their force when examined within the specifics of
Java. Creating a programming language like Java that allows platform-
independence will not inhibit technological development. On the contrary,
this is the advancement for which the computer science world has been
waiting. If anything, it will advance technology by enhancing the flow of
information across multiple platforms.

6' Hamilton & Sabety, supra note 3, at 270; see also Lowry, supra note 3, at 1315 (stating that "[a]

programming language is also unprotectible because its commands are 'building blocks' for creative
expression").

61 Lowry, supra note 3, at 1338-46.
62 Il

1999]

19

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

Further, Java will enable the operating system market to become more
competitive.63 The current operating systems market is affected heavily by
"network effects," meaning that "users will naturally gravitate towards a
single standard platform and tend to stay there."' But with the introduction
of Java, the need to use the same operating system disappears. One
commentator has noted this benefit:

[i]f each consumer could operate across
platforms, ...[c]onsumers could choose between
IBM, Apple, Sun, Linux and Microsoft operating
systems on their merits as programs, and not on the
basis of what everyone else uses, or what compatible
applications programs exist. In a world in which the
platform from which one operates is irrelevant to
one's ability to exchange data, the sheer number of
existing platform users will be much less important to
a consumer's purchasing decisions. 65

Thus, it is clear that Java is an important advancement for the computer
science industry. Allowing copyright protection in the language will not
take away from its importance to the industry. If anything, copyright
protection will encourage companies like Sun to invest, the resources
necessary to create such an advancement.66

4. How Our Hypothetical Copier is Affected. A court may find the high-
level component of the Java language uncopyrightable for the reasons
articulated above. However, the Java bytecodes seem to be copyrightable
subject matter under section 102 of the Copyright Act, section 102(b) and
First Amendment objections notwithstanding.

Where does this leave our hypothetical copier? There would be little
incentive to pursue the use of the high-level language without the bytecodes.
The copier would not be able to take advantage of the platform-
independence of the language. If the copier developed a new bytecode

63 Mark A. Lernley & David McGowan, Could Java Change Everything? The Competitive Propriety

of a Proprietary Standard, 520 PLL/Pat 453, 456-57 (1998).
6 Id. at 456.
65 Id.
6 But see id. at 466 (raising concerns about a single firm being able to control the standardization

process for the computer science industry).

(Vol. 7:127

20

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILI7Y

language, users would have little incentive to switch to the new language,
which would be incompatible with the Java code already in use. Thus, Sun,
although losing on the issue of copyrightability of their high-level language,
would win overall.

D. EXTENSION OF COPYRIGHT PROTECTION TO NON-LITERAL ASPECTS OF

A COMPUTER PROGRAM

In this part we will consider whether Sun could argue that its copyright
in the programs that utilize Java has been violated.

It is well-settled that copyright protection can be obtained for the literal
elements of a computer program.6" Congress has provided that copyright
protection exists in "literary works,"68 and the legislative history of the
Copyright Act makes it clear that computer programs fall within this
category.69 Thus, the literal elements of a computer program, i.e., the source
and object codes, are protected by copyright, just as the actual text of a book
is protected.

This part explores whether Sun's copyright in the software that utilizes
Java (the Java Compiler and Virtual Machine) extends to other non-literal
elements of the computer program, namely to the high-level Java language
and to the Java bytecodes. The Court of Appeals for the Third Circuit
explained the problem by noting that "copyrights of other literary works can
be infringed even when there is no substantial similarity between the works'
literal elements. One can violate the copyright of a play or book by copying
its plot or plot devices." 0 There has been disagreement among the courts of
the Federal Circuit as to what test should be used to determine whether
copyright protection extends to non-literal elements of a computer
program."1 There is also some issue as to whether a particular element is a

Apple Computer v. Franklin Computer, 714 F.2d 1240, 219 U.S.P.Q. (BNA) 113 (3d Cir. 1983)
(holding that "a computer program, whether in object code or source code, is a 'literary work' and is
protected from unauthorized copying, whether from its object or source code version").

17 U.S.C. S 102(a) (1994).
69 H.R. REP. No. 94-1476, at 54 (1976).
z' Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1234, 230 U.S.P.Q. (BNA) 481,

490 (3d Cir. 1986).
71 Compare Whelan Assocs., Inc., 797 F.2d 1222, 230 U.S.P.Q. (BNA) 481 (applying the

idea/expression dichotomy standard to determine infringement of a non-literal element) with Computer
Assocs. Int'l, Inc. v. Altai, Inc. 982 F.2d 693, 23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992) (utilizing a three-
step approach to determine infringement of a non-literal element).

1999]

21

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

j. INTELL. PROP. L.

literal or non-literal element of a computer program. 2 Further, Congress has
precluded copyright protection for any "idea, procedure, process, system,
[or] method of operation. "7 'The legislative history states that "Section
102(b) is intended, among other things, to make clear that the expression
adopted by the programmer is the copyrightable element in a computer
program, and that the actual processes or methods embodied in the program are
not within the scope of the copyright law." 74

Thus, copyright protection exists in the actual expression embodied in the
source code of a computer program but does not extend to "processes or
methods" used by the program. In determining whether copyright
protection extends to a non-literal element of a computer program, one must
keep in mind that processes and methods intrinsic to the program are not
copyrightable. At the heart of this issue is the idea/expression dichotomy:
copyright protection should only extend to those non-literal elements that
constitute part of the expression of the computer program, not to the idea
of the computer program.

This problem was considered by the Court of Appeals for the Third
Circuit in Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc.7 ' The
specific issue there was "whether the structure (or sequence and organization)
of a computer program is protectible by copyright, or whether the
protection of the copyright law extends only to the literal computer code." 6

The plaintiff in Whelan Associates, Inc. did not allege that the defendant had
copied any of the literal source or object code of its program. Rather, the
plaintiff alleged that the defendant copied the "structure, sequence, and
organization" of the plaintiff's program.' The court, considering whether
a non-literal element is part of the expression of the program, stated that "the
purpose or function of a utilitarian work would be the work's idea, and
everything that is not necessary to that purpose or function would be part

72 See Lotus Dev. Corp. v. Borland Int'l, Inc., 49 F.3d 807,34 U.S.P.Q.2d (BNA) 1014 (ist Cir. 1995)
(holding that menu-command hierarchy is uncopyrightable subject matter), affd by an equally divided
Court, 516 U.S. 233 (1996).

17 U.S.C. S 102(b) (1994).
z' H.R. REP. No. 94-1476, at 57 (1976) (emphasis added).
71 Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 230 U.S.P.Q. (BNA) 481 (3d Cir.

1986).
76 Id at 1224.
7 Id.

[Vol. 7:127

22

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILI7Y

of the expression of the idea."7" In applying the rule to the facts of that case,
the court held:

it is clear that the purpose of the utilitarian Dentalab
program was to aid in the business operations of a dental
laboratory. It is equally clear that the structure of the
program was not essential to that task: there are other
programs on the market, competitors of Dentalab and
Dentcom, that perform the same functions but have
different structures and designs.... The conclusion is
thus inescapable that the detailed structure of the
Dentalab program is part of the expression, not the idea,
of that program. . . . Because there are a variety of
program structures through which that idea can be
expressed, the structure is not a necessary incident to that
idea.79

The Whelan test gives a very broad definition of which non-literal elements
fall within the protection of copyright.

Applying the Whelan test to our hypothetical would likely yield a finding
that the high-level Java language and bytecodes are protected by the
copyright in the Java Compiler and the Virtual Machine software. In this
case the "idea" would be the creation of a program which facilitates platform-
independent software development. The choices of words and symbols that
make up the high-level Java language and Java bytecodes are not essential to
that idea. Any number of other words and bytecodes could be used to
facilitate the idea. Because there are a variety of ways that Sun could have
constructed its high-level language, and a variety of ways that it could have
specified its bytecodes, the high-level Java language and the Java bytecodes
would be protected under the Whelan test.

However, the Court of Appeals for the Second Circuit in Computer
Associates International, Inc. v. Altai, Inc.," chose not to adopt the Whelan

"' Md at 1236 (emphasis omitted).
9 d at 1238-40.

80 982 F.2d 693, 23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992).

1999]

23

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

test.8' Altai, Inc. involved a scheduling program for IBM mainframe
computers. The defendant unknowingly hired a programmer who had
worked on the plaintiff's program (CA-Scheduler) and who had in his
possession copies of the literal code from the plaintiff's program. This
employee used his copies of the plaintiff's literal code to write the
defendant's OSCAR program. After learning of the infringement, the
defendant decided to rewrite OSCAR from scratch, using none of the code
from OSCAR or from CA-Scheduler and none of the programmers who had
worked on the tainted OSCAR. In this way, the defendant ensured that the
new version of OSCAR in no way encompassed any of the literal elements
of the plaintiff's CA-Scheduler. However, the plaintiff argued that OSCAR
still infringed its CA-Scheduler because the structures of the two programs
were substantially similar. The court noted that the Whelan rule had
"received a mixed reception" from other courts and an even worse reception
from the academic community.82 The court stated that "the crucial flaw in
[Whelan's] reasoning is that it assumes that only one 'idea,' in copyright law
terms, underlies any computer program, and that once a separable idea can
be identified, everything else must be expression. "" The court went on to
state that "[Whelan's] approach to separating idea from expression in
computer programs relies too heavily on metaphysical distinctions and does
not place enough emphasis on practical considerations."84

The court, in place of the Whelan test, applied an abstraction-filtration-
comparison test. The first step, abstraction, was described by the court as
follows: "[i]nitially, in a manner that resembles reverse engineering on a
theoretical plane, a court should dissect the allegedly copied program's
structure and isolate each level of abstraction contained within it. This
process begins with the code and ends with an articulation of the program's
ultimate function." 85

The next step, filtration, was described by the court as:

" Every court that has dealt with this issue since 1992 has declined to follow the Welan test.
MERGES ET AL., supra note 5, at 889.

82 Altai, Inc., 982 F.2d at 705, 23 U.S.P.Q.2d (BNA) at 1252.

Id. at 705 (citation omitted).
" Id at 706.
8s Computer Assocs. Int'l, Inc. v. Altai, Inc., 982 F.2d 693,707,23 U.S.P.Q.2d (BNA) 1241, 1253 (2d

Cir. 1992).

[Vol. 7:127

24

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILI7Y

[the examination of] the structural components at
each level of abstraction to determine whether their
particular inclusion at that level was "idea" or was
dictated by considerations of efficiency, so as to be
necessarily incidental to that idea; required by factors
external to the program itself; or taken from the
public domain and hence is nonprotectable

86expression.

The third and final step is comparison. Once a court has completed the
first two steps, it will be left with a "core of protectable expression," or a
"golden nugget.""7 The court should then determine whether the "golden
nugget" of the defendant's work is substantially similar to the plaintiff's
"golden nugget."

The Altai, Inc. court applied this test to the facts, accepting most of the
district court's findings. The district court had determined that there were
five levels of abstraction: object code, source code, parameter lists, services
required, and the general outline.88 The court first observed that there was
no similarity in the source or object codes.89 In considering the parameter
lists and macros, the court held that many of the lists and macros were in the
public domain or dictated by the functional demands of the program, which
are "filtered" out and not given copyright protection.9" The court found that
the remaining lists and macros were not infringed.91 Finally, the district
court concluded that the organizational charts were simple and would be
obvious to anyone exposed to the operation of the program.92 Thus, the
court found no infringement.93

To apply this test to our hypothetical case, we must first apply the
abstraction step to two programs: the Java Compiler and the Java Virtual
Machine. The Java high-level language and bytecodes are at a greater level

6 ld. at 707.

I ld at 710.
s Id.
89 Id

" Computer Assocs. Int'l, Inc. v. Altai, Inc., 982 F.2d 693,714-15,23 U.S.P.Q.2d (BNA) 1241, 1259
(2d Cir. 1992).

91 Id
9'2 Id at 715.
93 Id

1999]

25

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

of abstraction than source or object code, but they are at a lower level of
abstraction than a "general outline." They may be somewhat akin to the
"parameter lists" used in the Altai, Inc. court's analysis. The text files written
in the high-level Java language are used as input to the Java Compiler, which
produces an object file consisting of Java bytecodes as output. The object file
is then used as input to the Java Virtual Machine.

At the second step, filtration, we must determine whether the inclusion
at that level was "idea" or (1) dictated by considerations of efficiency, (2)
required by factors external to the program itself, or (3) taken from the
public domain. It is difficult to imagine how these factors apply to
something like a language. However, the high-level Java language was in
large part based on an item in the public domain, the prior programming
languages C and C + +." For this reason much of the high-level Java
language may be filtered out in step two.

The Java bytecodes will not be filtered out for this same reason. The
bytecodes were not taken from anything in the public domain, unlike the
parameters and macros in Altai, Inc. They were wholly created by Sun.
Further, unlike the non-literal elements in Altai, Inc., the bytecodes were not
required by factors external to the program itself or by considerations of
efficiency, but rather were at the heart of the very purpose of the program
itself. The bytecodes directly facilitate platform-independence. Also, the
bytecodes are utilized by both the Compiler and the Virtual Machine. They
are possibly protected by copyrights in each program. Thus, the Java
bytecodes are likely "golden nuggets" of material fit for copyright
protection.

The third step, comparison, is the easiest of the steps in our hypothetical.
As specified earlier, the language and bytecodes used by our hypothetical
infringer are identical to the high-level Java language and Java bytecodes. If
the language is not filtered out in step two, it will prove to be "substantially
similar" in step three. Even if the high-level Java language is filtered out, the
bytecodes will remain protected. Our hypothetical copier will have violated
Sun's copyright in the Virtual Machine and in the Compiler through the use
of bytecodes identical to Sun's Java bytecodes.

It is notable that the filtration test in step two really just asks whether the
non-literal element is copyrightable. The test considers factors such as

94 LEMAY ET AL., supra note 11, at 11.

[Vol. 7:127

26

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILI7Y

whether the element came from the public domain and whether the element
was dictated by considerations of efficiency so as to be necessarily incidental
to the idea. Thus, the filtration step of the test seems to reduce the question
of whether the copyright extends to a non-literal element of the program to
the question of whether that non-literal element, in and of itself, is
copyrightable.9 '

This same concern caused the Court of Appeals for the First Circuit in
Lotus Development Corp. v. Borland International, Inc.' to construe Altai, Inc.
not to apply to cases involving the literal copying of some element of the
computer program. In Borland International, Inc., the plaintiff alleged that
the defendant had copied the entire command hierarchy from its spreadsheet
program Lotus 1-2-3 into the defendant's own spreadsheet program, Quattro.
The defendant did not copy any of plaintiff's literal code, but instead used
the Lotus command hierarchy so that Lotus users would not have to relearn
a new command hierarchy or rewrite their Lotus macros if they chose to
switch to Quattro. The court declined to follow the Altai, Inc. test:97

[t]he Second Circuit designed its [Altai] test to deal
with the fact that computer programs, copyrighted as
"literary.works," can be infringed by what is known
as "nonliteral" copying, which is copying that is
paraphrased or loosely paraphrased rather than word
for word ... The Second Circuit designed its Altai
test to deal with this situation in the computer
context, specifically with whether one computer
program copied nonliteral expression from another
program's code ... In the instant appeal, we are not
confronted with alleged nonliteral copying of
computer code. Rather, we are faced with Borland's
deliberate, literal copying of the Lotus menu
command hierarchy. Thus, we must determine not

9 This same issue was raised by Lowry, supra note 3, at 1306. Although not specifically referring to
the abstraction-filtration-comparison test, she notes that "the question, '[d]oes the copyright on the
underlying computer program extend to the language defined by the program?' cannot be answered before
determining whether a computer language is copyrightable." IdL at 1306.

6 49 F.3d 807, 34 U.S.P.Q.2d (BNA) 1014 (1st Cir. 1995), affd by an equally divided Court, 516 U.S.
233 (1996).

" Id at 815.

1999]

27

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

whether nonliteral copying occurred in some
amorphous sense, but rather whether the literal
copying of the Lotus menu command hierarchy
constitutes copyright infringement."

This decision seems to discard the Altai, Inc. test altogether. Any claim for
non-literal infringement of a copyright in a computer program could be
recast as a claim for literal infringement of whatever the non-literal element
was. For example, Altai, Inc. itself could be recast as a claim for infringement
of the plaintiff's copyright in the structure of the computer program. Then
the case would have turned on the issue of whether this type of structure, or
outline, is copyrightable in and of itself.

The Borland International, Inc. decision has received some criticism for
its characterization of the Altai, Inc. test. As one commentator points out,
the court's reasoning for not applying the Altai, Inc. test was incorrect in that
the test "was designed to determine if the non-literal elements of two
computer programs were substantially similar, and not, as the First Circuit
maintained, to determine if a copyright has been infringed by 'nonliteral'
copying."" However, another commentator has attempted to find
compatibility between the two decisions:

[o]ne possible way to reconcile Lotus and Altai is to
treat Lotus not as a case involving "literal" copying of
a menu structure, but as a case involving nonliteral
copying of the program itself. Lotus distributed
object code which, in certain combinations, produces
on a screen physical images that represent certain
words and have certain effects. Borland did not copy
that code; rather, it wrote its own code, which
produced similar images and had the same effects as
the Lotus code. The court could then have applied
Altai's abstraction-filtration-comparison analysis to
this "non-literal" copying. This is in effect precisely

Id. at 814-15.
Jeffrey M. Gott, Lotus Development Corporation v. Borland International: The United States Court

of Appeals for the First Circuit Takes a Step Backwardfor the Copyright Protection of Computer Programs,
30 CREIGHTON L. REv. 1349, 1399 (1997).

[Vol. 7:127

28

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILITY

what the Lotus court did-although when it reached
the "filtration" step, it determined that the entire
program was unprotectable at the menu command
hierarchy level."

It is unclear where the Borland International, Inc. decision leaves us. That
court would most likely opt not to use the Altai, Inc. test in a case like our
hypothetical. It would instead focus on whether the high-level Java language
and the Java bytecodes are copyrightable in and of themselves, as considered
above.

IV. CONCLUSION

Sun would likely have a valid copyright infringement claim against a
copier for the use of Sun's Java bytecodes in his compiler and virtual
machine. Its claim could either be based on infringement of the copyright
in the bytecodes or on infringement of a non-literal element of its Java
Compiler and Virtual Machine software programs.

On the other hand, Sun may have some difficulty in claiming copyright
infringement for the copier's use of its high-levelJava programming language
because much of the programming language is based on other languages
already in the public domain: C and C + +.

Having a valid copyright in the Java bytecodes helps Sun protect its
technology because a prospective copier has little incentive to copy and to
use the high-level component of the Java programming language without
using the Java bytecodes. Without the bytecodes, the copier would be
unable to create a language compatible with Java. Thus, if the copier wished
to create a platform-independent language, he would have to develop his
own bytecode instruction set. The object files created in Java could not be
executed on the copier's virtual machine. Likewise, object files created with
the copier's new compiler could not be executed on the Java Virtual
Machine.

Developers would have to choose the platform-independent language on
which to develop. It is unlikely that the computer industry would embrace
a new platform-independent language. With two incompatible platform-

100 MERGES ET AL., supra note 5, at 906-07.

1999]

29

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

independent languages available, the industry would be back to where it was
before Java. Developers would now choose the platform-independent
language on which to develop, just as they previously had to choose. A
copier would, however, be able to make his high-level component extremely
similar to Java. Thus, developers would not have to learn anything new to
switch between the two incompatible platform-independent languages.

For doctrinal consistency, Congress, having already determined that
computer programs are copyrightable subject matter, needs to make a similar
determination as to the copyrightability of the languages that are used to
write the computer programs. However, as a practical matter, the issue does
not frequently arise. Computer programming languages are not invented
everyday. It is also unclear whether the copier in our hypothetical would
actually find it worth the time and effort to develop a new language, whether
compatible with Java or not. However, the copier may be driven by the
incentives of the current market state. Technology is one of the fastest
moving industries. The market conditions and technological demands of
tomorrow may turn the hypothetical considered here into reality, making
the issue practically, as well as doctrinally, crucial.

MICHAEL P. DOERR

[Vol. 7:127

30

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILITY

APPENDIX I

The hypothetical situation considered in this Note is distinguishable from
the situation in Sun Microsystems, Inc. v. Microsoft Corp.1 ' In that case Sun
is claiming that Microsoft breached the Java licensing agreement entered into
between the two companies by adding keywords to the Java programming
language. 2 Sun claims that where the licensing agreement has been
breached, any use of the language by Microsoft constitutes copyright
infringement. 03

Although the suit will likely be decided on the terms of the licensing
agreement, the issue of the copyrightability of programming languages may
be addressed. For example, the following is an excerpt from oral arguments
regarding preliminary motions:

Mr. Quackenbush [attorney for Microsoft]: . ..
What's really going on here is Sun just disagrees with
these enhancements. Sun doesn't think they're good.
Sun doesn't think Microsoft should be able to go
forward and do those. Sun thinks that everybody, all
the tools vendors, all the competitors, ought to get
together and say, "Well, let's decide and go one slow
step at a time."

Where does the contract say that? It doesn't say
that. Microsoft doesn't need a license to add a
keyword. Sun doesn't have a copyright in the
language. Their copyright - there is no copyright
registration in their papers for the language. There's
a copyright for the JDK. [Java Developer's Kit]

A language is just that. It's a language. Maybe Sun
wishes Microsoft would not have gone forward and
made these enhancements. Maybe Sun is afraid
they'll be popular. Maybe Sun is afraid they'll have
to implement them themselves because people will

, Civil Action No. C97-20884 PVT (N.D. Cal. filed Oct. 7, 1997).
,02 Sun Microsystems, Inc., Second Amended and Supplemental Complaintl 83 (visited Oct. 5, 1999)

< http://java.sun.com/lawsuit/amend-complaint.html >.
103 Id at 118.

1999]

31

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

J. INTELL. PROP. L.

want them. That doesn't mean it's a breach of
contract...

If Sun claims that there is a copyright in the
language, which I know, I can't believe that they
would, and that it's covered by the JDK registration,
then its license for the JDK is licensed to Microsoft
with right to modify, adapt and create derivative
works.

If Sun claims that theJDK registration doesn't cover
it, which I think is the correct result, there's no need
for a license.

If I want to add a new word to the English language,
am I creating a dialect? Do I need to ask somebody's
permission? I can't copy somebody's dictionary.

Say I want to invent a word and I want people to
adopt it. 30 years ago, there was no word PC or
personal computer. Somebody started calling it a PC.
Now it's part of the English language. Does that
mean we have a new English, a new dialect of
English? It doesn't mean that. It's just a new word.
It doesn't harm anybody. It's a useful tool.

Mr. Day [attorney for Sun]:... Mr. Quackenbush
said that Sun does not have a copyright in the
language. I suggest you look at the front page of the
Java language specification. You'll see the copyright
notice there. Java does claim, or Sun does claim a
copyright in the Java language."°

One commentator has addressed the possibility of the issue of
copyrightability of programming languages arising in the lawsuit, stating:

A dispute between Sun and one of their [sic] licensees,
Microsoft, is emerging because Microsoft has
modified its version of Java to increase compatibility
with their [sic] Windows operating system without

104 Sun Microsystems, Inc., Transcript of Proceedings in Sun Microsystems, Inc. v. Microsoft Corp.,
9/10/98 (visited Oct. 5, 1999) < http://java.sun.com/lawsuit/hearing.091098.html>.

[Vol. 7:127

32

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

JAVA COPYRIGHTABILITY

Sun's permission. This dispute may erupt into
litigation centering on the question of whether
computer languages are copyrightable subject matter
- and it may turn out that Sun's rigorous licensing
requirements are unenforceable.03

10 Hamilton and Sabety, supra note 3, at 241-42.

1999]

33

Doerr: Java: An Innovation in Software Development and a Dilemma in Copy

Published by Digital Commons @ University of Georgia School of Law, 1999

34

Journal of Intellectual Property Law, Vol. 7, Iss. 1 [1999], Art. 5

https://digitalcommons.law.uga.edu/jipl/vol7/iss1/5

	Java: An Innovation in Software Development and a Dilemma in Copyright Law
	Recommended Citation

	Java: An Innovation in Software Development and a Dilemma in Copyright Law

