Ay School of Law
I"l universiTy oF georgla Digital Commons @ University of Georgia
‘" School of Law

Scholarly Works Faculty Scholarship
1-1-2001

Allchin’s Folly: Exploring Some Myths About Open Source
Software

Joe Miller
University of Georgia School of Law, getmejoe@uga.edu

Repository Citation
Joe Miller, Allchin’s Folly: Exploring Some Myths About Open Source Software (2001),
Available at: https://digitalcommons.law.uga.edu/fac_artchop/779

This Article is brought to you for free and open access by the Faculty Scholarship at Digital Commons @ University
of Georgia School of Law. It has been accepted for inclusion in Scholarly Works by an authorized administrator of
Digital Commons @ University of Georgia School of Law. Please share how you have benefited from this access
For more information, please contact tstriepe@uga.edu.

http://www.law.uga.edu/
http://www.law.uga.edu/
https://digitalcommons.law.uga.edu/
https://digitalcommons.law.uga.edu/
https://digitalcommons.law.uga.edu/fac_artchop
https://digitalcommons.law.uga.edu/fac_sch
https://docs.google.com/forms/d/e/1FAIpQLSc_7JxpD4JNSJyX6RwtrWT9ZyH0ZZhUyG3XrFAJV-kf1AGk6g/viewform
mailto:tstriepe@uga.edu

ALLCHIN’S FOLLY: EXPLODING SOME MYTHS
ABOUT OPEN SOURCE SOFTWARE

JosepH ScotT MILLER*

“Open source is an intellectual-property destroyer,” [Microsoft
Group VP James] Allchin said. “I can’t imagine something that
could be worse than this for the software business and the intel-
lectual-property business.” . . . “I'm an American, I believe in the
American way,” he said. “I worry if the government encourages
open source, and I don’t think we’ve done enough education of
policy makers to understand the threat.”’

The twists and turns in the government’s antitrust case against
Microsoft—from the D.C. Circuit’s stormy questioning at the two-
day oral argument in late February 2001 to its affirmance of the
lion’s share of the government’s case in June 2001, and then from
the settlement between the United States and Microsoft to the con-
tinuing battle by nine states for tougher sanctions—have garnered
their share of press attention.? But the high-profile antitrust case
has not been the only Microsoft-centered controversy during the
past year. Another involves the open source software movement,
about which Microsoft has professed grave fears. The fears, how-
ever genuine, spring from wrongheaded myths about open source
software. Exploding those myths is the burden of this Article.

In mid-February 2001, Microsoft executive James Allchin lob-
bed verbal grenades into the long-simmering dispute within the
software development community about whether software users
should have open access to a program’s human-readable “source
code” and the freedoms that such access can bring. The direct
quotations are reproduced above. Other Microsoft executives fol-

* Assistant Professor, Lewis & Clark Law School. B.A. 1989 St. John's College; M.S.
1991,].D. 1994 Northwestern University. I wrote this essay while the beneficiary of a sum-
mer research grant at Northwestern University Law School. Thanks to Jim Speta, Tom
Merrill, Susan Davies, and John Van Voorhis (each of whom gave me valuable comments
on an early draft), this essay is quite better than it would otherwise have been.

1 Bloomberg News, Microsoft Executive Says Linux and its Kind Threaten Innovation, at
http://investor.cnet.com/investor/news/newsitem/0-9900-1028-4825241-0.html (Feb. 14,
2001). James Allchin, group vice president of Microsoft’s Platforms Group, “has overall
responsibility for the product delivery, engineering and the technical architecture” of Win-
dows and related infrastructure pieces. Microsoft, fim Allchin Group Vice President, at http://
www.microsoft.com/PressPass/exec/Jim/default.asp (last visited July 17, 2001).

2 See United States v. Microsoft Corp., 253 F.3d 34 (D.C. Cir.), cert. denied, 122 S. Ct.
350 (2001). A transcript of the D.C. Circuit oral argument can be found at http:/ /www.
microsoft.com/presspass/trial/ transcripts/Feb01/02-26.asp and http://www.microsoft.
com/presspass/ trial/transcripts/Feb01/02-27 asp.

49]

492 CARDOZO ARTS & ENTERTAINMENT [Vol. 20:491

lowed suit: Craig Mundie, Microsoft’s senior vice president of Ad-
vanced Strategies,” denounced the open source software
movement in a May 2001 speech at the NYU Stern School of Busi-
ness,* and Microsoft CEO Steve Ballmer fumed in a June 2001 in-
terview that “Linux is a cancer.” Even Chairman Gates weighed
in, although he largely deferred to Mundie as “the expert” on the
issue.®

Free and open source software devotees have not been silent.
Ten leading figures in the related free and open source software
movements fired back at Microsoft, jointly issuing an open rebuttal
letter on May 15, 2001.7 Furthermore, Richard Stallman, founder
of the Free Software Foundation and the primary intellectual force
behind the free software movement,?® offered a more extended re-
buttal in his own speech at NYU.® The press has dutifully covered
the troop movements.'®

“Open source is an intellectual-property destroyer,” Allchin
warns.!' However, it seems most unlikely that Allchin meant that
open source software literally destroys intellectual property. Such a

8 See Microsoft, Craig Mundie Senior Vice President, at http:/ /www.microsoft.com/Press-
Pass/exec/craig/default.asp (last visited July 17, 2001).

4 See Craig Mundie, The Commercial Software Model, at http:/ /www.microsoft. com/ Press-
Pass/exec/craig/05- 03sharedsource. asp (May 3, 2001).

5 Dave Newbart, Microsoft CEQ Takes Lunch Break with the Sun-Times, at hup: / /
www.suntimes.com/cutput/tech/cstfin-micro01.html (June 1, 2001).

6 See Mike Ricciuti, Gates’ Grand Design, at hup:/ / news.com.com/2009-1082-
268707.html (June 20, 2001). In an interview with CNET, Mr. Gates described the com-
pany’s web services technologies and explained the basis for Microsoft’s attacks on the
open source software development model. See id.

7 See Bruce Perens et al., Free Software Leaders Stand Together, at http://perens.com/
Articles/StandTogether.html (May 15, 2001).

8 See Graham Lawton, The Great Giveaway, at http://www.newscientist.com/hottopics/
copyleft/copyleftart.jsp (last visited June 9, 2002) (“The open source movement originated
in 1984 when computer scientist Richard Stallman quit his job at MIT and set up the Free
Software Foundation. His aim was to create high-quality software that was freely available
to everybody Stallman’s move resonated round the computer science community
and now there are thousands of similar projects.”).

9 See Transcript, Richard M. Stallman, Free Software: Freedom and Cooperation, at http://
www.gnu.org/events/rms-nyu-2001-transcript.txt (May 29, 2001) (presenting an extended
rebuttal to Microsoft’s arguments and discussing the origins and development of free
software).

10 See, ¢.g., Laurie J. Flynn, New Economy: Despite Microsoft’s Best Efforts to Kill It, the Free-
Software Movement Shows No Sign of Quietly Rolling Over and Dying, N.Y. TiMEs, June 4, 2001, at
C4 (noting that support for open source software continues to grow in the US and abroad,
despite the efforts of Microsoft to curb the movement); An Open and Shut Case, ECONOMIST,
May 12, 2001, at 67 (comparing proprietary and open source approaches to software devel-
opment, and reviewing Microsoft’s public criticisms of open source software); Andrew Leo-
nard, Microsoft: Free-software Licenses are the Devil’s Work!, SaLoN, at http://www.salon.com/
tech/col/leon/2001/05/03/microsoft_gpl/index.html (May 3, 2001) (stating that free
software does not fit into the “economic reality” of the commercial open-source market,
and also suggesting that Microsoft should concentrate on its product development instead
of fueling more attacks on the General Public License).

11 Bloomberg News, supra note 1.

2002] ALLCHIN’S FOLLY 493

claim would, after all, be pure folly. The threat posed by open
source software, he elaborated, is to “the software business and the
intellectual-property business.”’* If the imbroglio between
Microsoft and the free software/open source software community
were merely a spat about differing business models or the relative
costs of developing a software program in different ways, it might
well be of little or no lasting importance to public policy. But
something more fundamental appears to be in play here.

This very public disagreement centers, in fact, on conse-
quences flowing from quite basic features of U.S. copyright law as
applied to software. Additionally, by shining a light on those basic
copyright law features, the disagreement provides a valuable op-
portunity for us to consider the appropriate level of direct public
support for open source software—both in terms of how much
public money (if any) should be spent obtaining open source
software to power government employees’ workplace computers
and in terms of how often (if ever) the results of publicly-funded
computer science research should be released as open source
software. Allchin’s professed “worry if the government encourages
open source,” suggests as much.'?

The debate between proprietary, closed source software com-
panies and free software advocates has actually been ongoing since
as early as 1984, when Richard Stallman founded the GNU Pro-

12 Id.

13 See Bloomberg News, supra note 1. Columbia Law School Professor Eben Moglen,
who has long served as the Free Software Foundation’s legal counsel, makes a compelling
case that the prospect of widespread government use of free software animates Microsoft’s
recent attacks on the free software movement. See Eben Moglen, Free Software Matters: The
Public’s Business, at http://emoglen.law.columbia.edu/publications/lu-09.html (Apr. 9,
2001).

Recent press reports suggest that open source software proponents have had some
success in persuading governments, both in the U.S. and abroad, to fund or purchase open
source software products. Se, e.g., Paul Festa, Governments Push Open-Source Software, at
http://news.com.com/2100-1001-272299.html (Aug. 29, 2001); Stephen Shankland, Ko
rean Government Buys Into Linux, at http://news.com.com/2110-1001-816522.html (Jan. 16,
2002); John Lettice, MS Chief Lashes Out at German Free Software Petition at http:/ /www.the
register.co.uk/content/archive/23964.html (Feb, 6, 2002); John Lettice, Report Favours
Open. Source, Windows Mix for Bundestag, at http://www.theregister.co.uk/content/archive/
24048.htm] (Feb. 13, 2002); Stephen Shankland, Linux Contract Treads on Microsoft Turf, at
htep://news.com.com/2102-1001-931027. html (June 3, 2002) (reporting that “[t]he Ger-
man government has signed a deal with IBM and Linux company SuSE that makes it easier
for government offices to use the open-source operating system, a move that addresses
concerns about relying too heavily on Microsoft products”); Matt Loney, EC Report Advises
Open Source for Europe, at http://zdnet.com.com/2100-1104-942055 huml (July 8, 2002) (re-
porting the conclusions of a study sponsored by the European Commission, “called Pooling
Open-Source Software, recommend[ing] that European administrations should share
software on an open-source licensing basis, to cut soaring e-government information tech-
nology costs”).

494 CARDOZO ARTS & ENTERTAINMENT [Vol. 20:491

ject'* in order to create a free software operating system. Any de-
bate this longstanding develops myriad nuances, and the closed
source/open source conflicts are no exception. With a bit of back-
ground on software development basics, however, one can readily
grasp the core copyright and public funding issues at stake in this
recent dispute.

Software, a computer program, is simply a set of instructions
that controls a computer’s operation and directs it to bring about a
desired result.'®> Because software is written by people but carried
out by digital computers, a given program generally exists in two
forms—one called “source code” and the other called “object
code.”'® Source code is the readily human-readable form of the
program.'” Object code is the machine-executable form, essen-
tially a string of 1s and 0s.'® Not surprisingly, a person (being a
person, and not a computer) needs access to the source code if he
or she wants to modify the program readily.’* Another technologi-
cal fact that has interesting copyright law consequences: when you
use a piece of software on a computer, you invariably wind up mak-
ing copyrightlaw-relevant copies in the computer’s transitory
memory of all or a substantial part of the program.?® This makes
software quite different from a book printed on paper: you can use
the book by reading it without making a copy of it.

Imagine now that you are the author of a piece of software.
You have it saved in two files, one containing the source code and
the other containing the object code. It is settled law that you, as
the author, hold the copyright in the software.?’ Furthermore, you
control the right to copy the software (for distribution or other-

14 See Lawton, supra note 8.

15 The Copyright Act, for example, defines a “computer program” as “a set of state-
ments or instructions to be used directly or indirectly in a computer in order to bring
about a certain result.” 17 U.S.C. § 101 (2000).

16 See MARK LEMLEY ET AL., SOFTWARE AND INTERNET LAaw 25 (2000).

17 See id. (describing source code as the “higher-level languages that use abbreviations
and short words to convey the action [of] the program” and that “can be readily under-
stood by skilled programmers”).

18 See id. (describing object code as the “machine-executable form” of the software, in
“binary code” of 1s and 0s).

19 Skilled computer scientists can, in fact, read code in binary form (i.e., the string of 1s
and 0s), but it is extremely tedious and time-consuming to do so. See id. at 25, 27 (noting
that source code is “easier for humans to decipher™ and “it is possible to write programs
directly into machine-level language”). The text thus simplifies matters a bit, but captures
the points that are essential to the free software/closed source debate.

20 See id. at 195-96. The leading case on this point is MAT Systems Corp. v. Peak Compuler,
Inc., 991 F.2d 511 (9th Cir. 1993). Congress continues to tinker, in 17 U.S.C. § 117 (2000),
with the consequences of this technological fact for the relationship between software pro-
vider and software user. See LEMLEY ET AL., supra note 16, at 201-05,

21 See 17 U.S.C. § 201(a) (“Copyright in a work protected under this title vests initially
in the author or authors of a work.”).

2002] ALLCHIN’S FOLLY 495

wise), as well as the right to modify the software to produce a differ-
ent program (or a “derivative work”).?* As a result, if you decide to
distribute the software to others for their use, you will have choices
to make about whether to allow the recipients to copy the software
for redistribution or otherwise, or to modify the software into a
different program. Three basic distribution approaches, each re-
flecting different choices about a software recipient’s right to dis-
tribute copies or prepare derivative works, are of interest here.

You can put the software—source code and object code—en-
tirely into the public domain, disclaiming all your copyright pow-
ers.”* If you do so, anyone who receives a copy of the program
thereafter can copy it as few or as many times as desired without
any need for permission from you. In addition, because you have
disclaimed your right to control the preparation of derivative
works, the recipient can author a new piece of software comprising
a modified version of your software, e.g., with some additional func-
tionalities or with some bugs fixed. Again, this can be done with-
out any need for permission from you. Also note that a recipient
or second author will hold the copyright in this resulting derivative
work (at least as to the newly created material) and therefore will
enjoy the same control over others’ activities regarding the deriva-
tive work that you once enjoyed over your own work (before your
disclaimer).?* You will, for example, have to obtain the second au-
thor’s permission before you copy or modify this new software, just
like everyone else. Additionally, the second author, far from being
forced to disclaim copyright protection for the new program, has
the right to take a far more restrictive approach than you did to the
licenses granted to others.

22 Seeid. § 106 (“Subject to sections 107 through 121, the owner of copyright under this
title has the exclusive right to do and to authorize any of the following: (1) to reproduce
the copyrighted work in copies or phonorecords; (2) to prepare derivative works based
upon the copyrighted work; [and] (3) to distribute copies or phonorecords of the copy-
righted work to the public by sale or other transfer of ownership, or by rental, lease, or
lending").

23 See Tom W. Bell, Escape from Copyright: Market Success vs. Statutory Failure in the Protec-
tion of Expressive Works, 69 U. Cin. L. Rev. 741, 79394 (2001) (collecting cases and commen-
taries) (“Courts and commentators agree that a copyright owner can reject the copyright
Act’s protections and abandon an expressive work to the public domain.”) (footnotes omit-
ted) .

24 Under the Copyright Act, derivative works are independently eligible for copyright
protection. See 17 U.S.C. § 103(a) (“[t]he subject matter of copyright as specified by sec-
tion 102 includes compilations and derivative works”), id. 103(b) (“[t}he copyright in a
compilation or derivative work extends only to the material contributed by the author of
such work, as distinguished from the preexisting material employed in the work”); Lydia
Pallas Loren, The Changing Nature of Derivative Works in the Face of New Technologies, 4].
SmaLL & EmErGING Bus. L. 57, 61-64 (2000) (providing general discussion of derivative
work right).

496 CARDOZO ARTS & ENTERTAINMENT [Vol. 20:491

Alternatively, you can. distribute the software in object code
format only and under a license that denies the user any authority
to redistribute copies of the software, to modify the software in any
way, or to convert the object code into source code. This method,
which one might label a “closed source” approach because it de-
nies the user access to the source code, should look familiar. It is,
in fact, the preferred distribution method among mass-market
software firms such as Microsoft.

Finally, you can distribute the software with source code ac-
companying object code and under a license that authorizes (a)
unlimited redistribution of the original package (source code, ob-
ject code, and license), (b) unlimited modification of the original
software, and (c) unlimited distribution of any resulting modified
software provided that two simple conditions are met: First, the
new software must identify both the author of the changes and the
changes themselves; and second, the new software must be distrib-
uted under the same license terms and conditions as the original
software. This distribution approach is known as “free software,”*
and it comports with the definition of “open source software”
promulgated in 1998.2° The best-known free software license is the
GNU Project’s General Public License, or “GPL.”? The GPL has
been used to distribute numerous programs, including the GNU /
Linux operating system.?® In sharp contrast to placing a piece of

25 The Free Software Foundation’s web site provides the canonical definition of “free
software.” See Free Software Foundation, The Free Software Definition, at htip://
www.gnu.org/philosophy/free-sw.html (last visited March 5, 2002).

26 The Open Source Initiative (“OSI”) began in 1998 in an effort to make the princi-
ples of free software more palatable to corporate IT managers put off by the radical vibe
that had built up around the phrase “free software” “Unlike the FSF, to which the open
source philosophy is essentially a set of ethical values, OSI markets the open source con-
cept primarily as a business model, not a model of society.” Mathias Strasser, A New Para-
digm in Intellectual Property Law? The Case Against Open Sources, 2001 Stan. Tech. L. Rev. 4,
61, at http://stir.stanford.edu/STLR/Articles/01_STLR_04/index.htm. For two accounts
of OSI's history, see Bruce Perens, The Open Source Definition, and Eric S. Raymond, The
Revenge of the Hackers, in OPEN SOURCES: VOICES FROM THE OPEN SoURCE RevoLuTioN (Chris
DiBona et al. eds., 1999).

OSI has its own canonical “Open Source Definition.” See Open Source Initiative, The
Open Source Definition: Version 1.8, at http://www.opensource.org/docs/definition.html
(last visited March 5, 2002). The “Open Source Definition” has a great deal in common
with the Free Software Foundation’s “Free Software Definition,” and OSI includes the GPL
in its list of 20+ OSl-certified software licenses. See http://www.opensource.org/licenses/
index.html] (last visited March 5, 2002). The primary difference between the Free Software
Definition and the Open Source Definition is that the former requires the author of a modi-
fied version of a program to distribute it (if at all) under the free software license, whereas
the latter merely permits the author to do so. As a result, some open source software li-
censes allow authors of derivative works to take the source code of the derivative work
private. See Perens, supra note 7, at 181-85 (comparing different licenses).

27 The terms of the GPL can be found at http://www.gnu.org/copyleft/gpl.html (last
visited Jan. 25, 2002).

28 See http://www.opensource.org/licenses/index.html (last visited Apr. 21, 2002)

2002} ALLCHIN’S FOLLY 497

software into the public domain by utterly disclaiming copyright
protection, using a free software license such as the GPL prevents
downstream recipients from using the software to create new pro-
grams for distribution under a closed source approach.

The GPL demonstrates that one can harness the control that
copyright law provides to make a piece of software fully and indefi-
nitely accessible, or free, to its users. The carefully crafted license
terms do all the work. In other words, open source software, far
from forswearing copyright protection, relies centrally on the basic
rights that copyright law gives to authors.

In the light of this insight, what sense can we make of
Microsoft’s statements about open source software and, more spe-
cifically, about the GPL? James Allchin, quoted above, has called
open source software an “intellectual-property destroyer” and im-
plied that it is not “American.”®® Not much to work with there.
The GPL does not destroy a software author’s original copyright;
rather, it is predicated squarely upon it. Nor does the GPL destroy
the subsequent copyright held by a user who authors a derivative
software work by modifying or adding to the original program.

Allchin later clarified, through a spokesperson, that his con-
cerns “stem from GPL paragraph 2(b),” which allegedly indicates
that “anyone who adds or innovates under the GPL agrees to make
the resulting code, in its entirety, available for all to use-. . .
[which] might constrain innovating stemming from taxpayer-
funded software development.’”?® This claim, although not absurd
on its face, trades on an erroneous reading of the GPL.

To be sure, GPL paragraph 2(b) sets the price of one’s right to
distribute a derivative work at assent to a share-and-share-alike ap-
proach. According to this provision,

You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the [original] Pro-
gram or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.?!

It should be noted, however, that this sharing requirement is
expressly limited to works that “you distribute or publish.”®* One

(describing the GPL as among the “four . . . ‘classic’ licenses most commonly used . for
open-source software”); Linus Torvalds, The Linux Edge, in OPEN SOURCES, supra note 26, at
101, 107 (stating that Linux is licensed under the GPL).

20 Sgp Bloomberg News, supra note 1.

30 Peter Coffee, Microsoft Clarifies Exec’s Open-Source Concerns, EWEEK, Feb. 20, 2001, avail
able at http:/ /www.zdnet.com/eweek/stories/general /0,11011,2687872,00. hunl.

31 Free Software Foundation, GNU General Public License para. 2(b), at hup://www.gnu.
org/copyleft/gpl.html (last visited Jan. 25, 2002). .

32 14 .

498 CARDOZO ARTS & ENTERTAINMENT [Vol. 20:491

can thus innovate for oneself, i.e., modify the program for internal use,
as much as one likes and without having to share any source code with

anyone. As the “Frequently Asked Questlons about the GNU GPL”
web page explains,

The GPL does not require you to release your modified version.
You are free to make modifications and use them privately, with-
out ever releasing them. This applies to organizations (includ-
ing companies), too; an organization can make a modified
version and use it internally without ever releasing it outside the
organization.

But if you release the modified version to the public in some
way, the GPL requires you to make the modified source code
available to the users, under the GPL.

Thus, the GPL gives permlssmn to release the modified pro-
gram in certain ways, and not in other ways; but the decision of
whether to release it is up to you.?®

In the words of the May 15 open rebuttal letter, “the legal require-
ments of the GPL apply only to programs which incorporate some
of the GPL-covered code—not to other programs on the same sys-
tem, and not to the data files that the programs operate upon.”**

The only innovations that GPL paragraph 2(b) appears to de-
ter, then, are those as to which a would-be innovator will not make
the effort to innovate absent the ability to distribute the resulting
software under the closed source approach. This is almost cer-
tainly not an empty set. It is no doubt true that some software de-
velopers will not or cannot work on improving or adapting GPL-
covered software, and that the innovations these developers would
have made but for the presence of the GPL might not be achieved
by the developers who are willing to work on GPL-covered
software.*® How, then, should this fact about the GPL’s apparent

33 Free Software Foundation, Frequently Asked Questions About the GNU GPL, at hup://
www.gnu.org/ copyleft/gpl-faq.html (last visited Jan. 25, 2002) (responding to the question
“Does the GPL require that source code of modified versions be posted to the public?”); see
also GPL, para. 2 (“Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.”) (emphasis added);
Eben Moglen, Free Software Matters: Enforcing the GPL 2, at http://emoglen.law.colum
bia.edu/publications/lu-12.pdf (Aug. 12, 2001) (“Almost everyone who wses GPL’d
software from day to day needs no license, and accepts none. The GPL only obliges you if
you distribute software made from GPL’d code, and only needs to be accepted when redis-
tribution occurs.”) (emphasis added).

34 Perens, supra note 7.

35 Of course, closing the software’s source code also deters innovations, and in a similar
way: Because the software’s source code is closed to all developers except those chosen by
the program’s owner, most software developers simply cannot work on improving or adapt-
ing closed source software. Still other developers could work on the program if given the
source code, but will not do so on principle. Ostensibly, Richard Stallman appears to be

2002] ALLCHIN’S FOLLY 499

incentive effects shape the government’s posture toward open
source software licensing models? Before exploring the question
in more detail, it is worth reviewing Craig Mundie’s and Steve
Ballmer’s aforementioned remarks.

Mundie began his speech at NYU by discussing a new
Microsoft business strategy called “Shared Source,”® Redmond’s
apparent answer to the growing popularity of software covered by
open source licenses, such as the GNU/Linux operating system
and the Apache web server.?” Toward the end of the speech, how-
ever, he leveled two charges at the GPL:

The GPL mandates that any software that incorporates source
code already licensed under the GPL will itself become subject
to the GPL. When the result.mg software product is distributed,
its creator must make the entire source code base freely availa-
ble to everyone, at no additional charge. [1] This viral aspect of
the GPL poses a threat to the intellectual property of any organi-
zation making use of it. [2] It also fundamentally undermines
the independent commercial software sector because it effec-
tively makes it impossible to distribute software on a basis where
recipients pay for the product rather than just the cost of
distribution.?®

such a programmer. The innovations that the excluded developers would have made but
for the closed source approach might not be achieved by the developers who are willing
and able to work on closed source software.

36 Se¢ Craig Mundie, The Commercial Software Model, at http:/ /www.microsoft.com/Press-
Pass/exec/craig/05-03sharedsource.asp (May 3, 2001).

87 See Stephen Shankland, Microsoft, Red Hat Argue Open Source, at http://
news.com.com/2102-1001-270684.html (July 26, 2001) (describing Microsoft’s “‘shared
source’ plan” as “an- alternative to” the GPL).

38 Mundie, supra note 36 (bracketed numbers added). More recently, in an e-mail first
distributed within Microsoft, Mundie echoed this second concern. In this e-mail, Mundie
warned of “the potential implications of the GPL for use in disseminating the results of
academic or government-funded research.” Craig Mundie, Microsoft’s Views on Open Source
and GPL Licensing, at 2, at http://use.perl.org/article.pl?sid=01/07/26/2341206 (July 26,
2001). According to Mundie,

[tThe GPL in this context effectively erects a wall that prevents the public and

_private sectors from working together. By restricting severely the rights of any-

_one who incorporates GPL code into their own software program, the GPL
makes it impossible for commercial software companies to build on the types of
academic works that have been put in the public domain and have helped fuel
innovation [for] the last half-century.

Id. Similarly, at the Microsoft-sponsored April 2002 “Government Leaders’ Conference,”
Chairman Gates opined that “GPL software is like this thing called Linux, where you can
never commercialize anything around it; that is, it always has to be free.” Microsoft, Govern-
ment Leaders’ Conference Remarks by Bill Gates 10-11, at http://www.microsoft.com/billgates/
speeches/2002/04-17glc.asp (Apr. 17, 2002). But the claim that use of the GPL frustrates
software commercialization or a software business sector is accurate if, and only if, the
“commercial software companies” in question are inalterably committed to a software-as-
unopenable-widget business model—rather than, for example, a software-as-opportunity-
to-sell-hardware-or-maintenance-or-development-services model.

500 CARDOZO ARTS & ENTERTAINMENT [Vol. 20:491

Neither criticism stands up well to scrutiny.

The first charge is groundless, no matter how one interprets
the phrase “making use of it.”* If “making use of” the software
means using it to perform the task(s) for which it was designed, the
claim is simply absurd. One does not, merely by running a piece of
GPL-covered software, threaten the validity or enforceability of any
of one’s copyrights, patents, trademarks, or trade secrets. If, as is
more likely, “making use of” the software means using it as the
starting point for authoring a derivative software work, the claim
trades on another misreading of the GPL. The only thing the GPL
requires when you use covered software to prepare a derivative
software work without also distributing that work is that you “cause the
modified files to carry prominent notices stating that you changed
the files and the date of any change.”° As was discussed above, if
you do not distribute the new software, you are not required to
share it—any portion of it—with anyone. Finally, even if you do
distribute the derivative work, your copyright in the work is not
under any “threat.”' Rather, it is simply conditioned on using the
GPL to cover the distributed derivative work.

Mundie’s second charge may or may not prove accurate, but it
is certainly quite startling. According to Mundie, requiring the
works derived from free software-to remain free software “funda-
mentally undermines the independent commercial software sec-
tor.”*? Mundie essentially argues that, with a piece of free software,
the author of a derivative work cannot practically price a copy of
the software above the cost of reproduction and distribution. To
be sure, GPL~covered software holds less promise as a platform for
profitable derivative works than would the same piece of software if
found in the public domain (derivatives of which can be made
closed). But does this fact fundamentally undermine “the inde-
pendent commercial software sector”?*® It seems unlikely. As An-
drew Leonard, a long-time student of the free software movement,
observed,

even if the most venomous interpretation of the GPL is true,
there’s a very simple answer for companies like Microsoft, fear-
ful of entanglement with the stain of free software: Don’t turn to
open-source software at all - instead, innovate, like Microsoft’s
marketing literature says. Strictly written free-software licenses

39 Microsoft, supra note 36.

40 See Free Software Foundation, supra note 31,
41 See Mundie, supra note 36.

42 Id

43 d,

2002] ALLCHIN’S FOLLY 501

aren’t designed to make it difficult for commercial software
companies to do business; they’re designed to prevent corpora-
tions from profiting off of the freely donated labor of program-
mers without giving anything back.**

Microsoft’s Steve Ballmer echoed his colleagues in more pun-
gent terms. When asked whether he “view[ed] Linux and the
open-source movement as a threat to Microsoft,”**" Ballmer re-
sponded by characterizing the GPL as a cancer:

It's good competition. It will force us to be innovative. It will
force us to justify the prices and value that we deliver. And
that’s only healthy. The only thing we have a problem with is
when the government funds open-source work. Government
funding should be for work that is available to everybody. Open
source is not available to commercial companies. The way the
license is written, if you use any open-source software, you have
to make the rest of your software open source. If the govern-
ment wants to put something in the public domain, it should.
Linux is not in the public domain. Linux is a cancer that at-
taches itself in an intellectual property sense to everything it
touches. That’s the way that the license works.

About the only thing right here is the spelling.

“Open source is not available to commercial companies”?*? It
is, of course, fully available to all commercial companies—even
commercial software companies. Indeed, a commercial software
company can use open source software not only to carry out
whatever task the software performs (and any task that the software
can be modified to perform), but also to learn all that the pro-
gram’s source code can teach another developer about how to
write good software. And merely using open source software does
not force you to “have to make the rest of your software open
source.”*® Instead, as should now be familiar, only a publicly distrib-
uted derivative work based on a GPL-covered program need itself
be made open source.

When Microsoft snarls words like “destroyer,” “viral” and “can-
cer” to describe a method of distributing software source code that
relies on bedrock copyright law principles to prevent anyone from
closing that code in the future, one can be forgiven for wondering

44 Andrew Leonard, Microsofi Unbound, at http://www.salon.com/tech/col/leon/
2001/06/12/monopoly_redux (June 12, 2001).

45 See Newbart, supra note 5.

46 Jd.

47 Id.

18 4.

502 CARDOZO ARTS & ENTERTAINMENT [Vol. 20:491

(with apologies to Bertrand Russell) whether the folks in Redmond
define “liberty” as the freedom to obey Microsoft.*® However they
define it, the clearest danger here for public policy is that decision-
makers in government may repeat Microsoft’s frequent and funda-
mental mistakes about the GPL and other open source software
licenses.

Ostensibly, Microsoft would have us believe that open source
software is in some deep and troubling way hopelessly incompati-
ble with our intellectual property law system. This contention is
false. Open source software authors, far from forswearing copy-
right protection, rely squarely upon it to promote and protect the
freedoms they want their software users to enjoy. Indeed, the GPL
and other open source software licenses enhance copyright law by
demonstrating that copyright’s internal logic—*“the conviction that
encouragement of individual effort by personal gain is the best way
to advance public welfare through the talents of authors and inven-
tors”*®—applies not only where personal gain takes the form of
cash, but also where it takes the form of the pleasure of successfully
confronting a daunting programming challenge or helping your
neighbor with some software he or she needs, as well as the en-
hancement to your reputation in the software development com-
munity that both those activities can bring.”'

Cash remains, of course, a perfectly good incentive for spur-
ring software innovation. Thus it seems quite fair to ask the ques-
tion that Microsoft’s remarks, stripped of agitprop, suggest—
namely, given that some software developers will not (or cannot)
work on improving or adapting GPL-covered software, and that the
innovations they would have made might not be achieved by the

49 Russell joked that Hegel's statist philosophy defined “liberty” as “the freedom to
obey the police.” Anthony Quinton, Springtime for Hegel, N.Y. Rev. Books, June 21, 2001, at
78, 79 (reviewing Terry Pinkard’s Hegel: A Biography).

50 Mazer v. Stein, 347 U.S. 201, 219 (1954) (upholding copyright protection for statu-
ettes that were intended for use as, and were used as, bases for mass-produced table
lamps).

51 For a penetrating analysis of the point, see Stephen M. McJohn, The Paradoxes of Free
Software, 9 GEo. MasoN L. Rev. 25, 35-44 (2000). For an equally penetrating, if far more
skeptical, analysis, see Strasser, New Paradigm, supra note 26, at 75-87.

For my part, I am not arguing that only cash motivates closed source software develop-
ers, or that only altruism motivates open source software developers. Such arguments
would, at the least, run aground on what we already know about service-based and other
models being used to build open source software businesses. See Eric S. Raymond, The
Magic Cauldron, in THE CATHEDRAL & THE Bazaar 129-40 (2d ed. 2001); Sergio G. Non,
Linux Stocks Burn Oui, Fade Away, ai http://news.cnet.com/news/0-1003-201-6947032-
0.html (Aug. 24, 2001) (where a leading Linux distributor stated “Red Hat’s revenue en-
gine isn’t its OS distribution; after all the Linux kernel can be had for free. The real
money is in the company’s Red Hat Network, used to provide patches, updates and other
technical support to subscribers.”).

2002] ALLCHIN’S FOLLY 503

developers who are willing to work on GPL-covered software, what
posture should government take toward free software licensing
models such as the GPL, and open source software more generally?
It also seems fair, in framing an answer, to separate the two differ-
ent roles that government is likely to play with respect to open
source software—software purchaser, and funding source for basic
computer science research and development (“R&D”).

When acting as a software consumer, the Government should
put open source and closed source software on an equal footing.
The key questions for choosing software are (or should be) de-
signed to identify the likely benefits and costs of making a particu-
lar choice. Does the candidate software perform well the function
for which it is needed? How much will it cost to tailor it, with fur-
ther development, to the system(s) already in place? How secure is
the software against outside attack? How compatible is the
software with other widely available hardware and software? Is the
market for servicing the software competitive, and will it remain so?
What future costs is one likely to incur by acquiring this software
today—expensive upgrades? Root-and-branch replacement if the
vendor goes out of business? What future benefits—including spil-
lover benefits to third parties—are likely to be realized by acquir-
ing this software today? After considering the answers to all these
questions and others like them, if a government actor determines
that an open source software program offers greater benefits at a
given cost, then it should acquire the open source software. Like-
wise, if the closed source software is a better value, the government
actor should acquire that software instead. In short, I can think of
no good reason why government should, as a software consumer,
use public money generally to favor either type of software, open
or closed, as a type. Nor has Microsoft provided such a reason.

The question of public funding for computer software R&D is
a bit tougher to answer. According to the traditional account of
industrial R&D funding, an R&D project attracts private invest-
ment in rough proportion to the likelihood that the project’s re-
sults can reliably be commercially exploited to generate a healthy
return; R&D projects targeted at more basic questions, because
they offer commercial benefits that are far less predictable and im-
mediate, thus attract less private investment than applied
projects.®® This is true despite the fact that society as a whole may

52 See John M. Golden, Biotechnology, Technology Policy, and Patentability: Natural Products
and Invention in the American System, 50 Emory L. Rev. 101, 139 (2001) (“Investors, for their
part, want a discrete and well-defined return on their investment, something that generally
requires the development of a marketable product, rather than the mere disclosure of a

504 CARDOZO ARTS & ENTERTAINMENT [Vol. 20:491

benefit more from having answers to more basic questions. Gov-
ernment thus invests public money in basic R&D to correct what
would otherwise be an underinvestment in basic knowledge for
widely shared benefit.>®> According to this understanding, public
investments in generating basic knowledge are justified to the de-
gree that they broaden and deepen the reserve of public informa-
tion inputs on which private actors can draw for their more applied
efforts. As a result, it would plainly be self-defeating for govern-
ment to structure its investments of public money in basic R&D in
a way that generally blocks private actors from incorporating the
results of that research into their own privately funded work.’* As
Professor Lessig has observed in this context, “a government has its
own interests, and closing its resources to others is not one of
them.”®

The upshot for publicly funded computer science R&D is thus
difficult to determine. At first blush, the proper baseline appears
to be for the government to require that the software results it
funds be put into the public domain, fully disclaiming any copy-
right protection.”® Once in .the public domain, the advances are
fully available as inputs for use by both open source and closed
source software developers alike. Adherence to a public domain
default rule would provide the most flexibility to downstream pri-
vate actors without sacrificing any innovations that a software devel-
oper would have made if only the governmentsponsored results
had been provided in the distribution channel the developer pre-

scientific discovery. As a result, the ‘funders’ of industrial research and development—
venture capitalists and other private investors—generally do not even seek to compete with
public sector fundmg for basic research. They naturally focus on the development of com-
mercial applications.”). For a creative exploration of some of the shortcomings of the
traditional dichotomy between basic and applied research, see Brett Frischmann, Innova-
tion and Institutions: Rethinking the Economics of U.S. Science and Technology Policy, 24 VT. L.
Rev. 347 (2000). .

53 See generally ROBERT COOTER & THOMAS ULEN Law & EcoNomics 106-09, 126-27 (3d
ed. 2000) (discussing theoretical bases for predicting that private markets undersupply
public goods such as information).

54 Weapons research presents a somewhat different picture because the goal of the
research—effective national defense—is a public benefit, but a large share of the re-
search’s value may come from its remaining secret (rather than from contributing to a
common fund of knowledge on which others can build). My analysis thus may have little
application to computer science R&D that is conducted pnmanly for a national security
purpose.

55 LAWRENCE LEssiG, THE FUTURE oF IDI;AS THE FATE OF THE COMMONS IN A CONNECTED
WorLp 247 (2001) (arguing that “the govemment should encourage the development of
open code”).

56 In effect, government-funded software R&D results would be treated the same way as
works of authorship prepared by U.S. government employees as part of their official duties,
which are expressly ineligible for U.S. copyright protection. See 17 U.S.C. § 105 {2000)
(“Copyright protecuon under this title is not available for any work of the United States
Government"),

2002] ALLCHIN’S FOLLY 505

ferred (e.g., open), rather than in the channel she disfavored (e.g.,
closed).

The public domain default rule also assumes, however, that a
software developer’s incentives to innovate are unaffected by the
existence of a concurrent development project that starts from the
same origin (i.e., the publicly funded, public domain result) but
proceeds under the opposite distribution model. This assumption
no doubt holds true in some cases. For example, Richard Stallman
has described how he incorporated MIT’s public-domain X Win-
dow System into his GNU free software (covered by the GPL) even
though, at the same time, vendors of closed-source Unix systems
were incorporating the X Window System into their own proprie-
tary products.’’” This independence-of-development assumption,
however, may not hold true in all cases. Perhaps, for a given pro-
gram or family of programs, the co-existence of alternative open
and closed source versions of the software would deaden the inno-
vation-spurring incentives in both development branches. If they
exist, the government in such cases would deter innovation by re-
leasing the software into the public domain.

In an ideal world, then, the government funding source would
select for each computer science R&D investment the appropriate
initial licensing model. For example, the appropriate licensing
model might be the public domain in instances where that model
will lead to both open source and closed source innovations. On
the other hand, either open or closed source would be the appro-
priate licensing model where the failure to pick one of the two will
dead-end the project. We do not, however, live in an ideal world. I
doubt that those who administer government-funded computer sci-
ence R&D projects can reliably identify ex ante the projects that
warrant a departure from the public-domain-release default rule.
Moreover, my doubts stem from inherent complexities of the pre-
diction problem (large number of variables, limited information,
etc.), which are likely to remain intractable. The public domain
default rule thus strikes me as the best approach for publicly
funded computer science R&D in our decidedly imperfect world.

The free software/closed source debate will, of course, con-
tinue. The software development community enjoyed a live(ly) de-
bate between Microsoft’s Craig Mundie and Red Hat’s Chief
Technical Officer Michael Tiemann in July 2001 at the O’Reilly

57 SeeRichard Stallman, The GNU Operating System and the Free Software Movement, in OPEN
Sourcks, supra note 26, at 53, 57-69; Richard Stallman, The X Window’s Trap (1998), at
http://www.fsf.org/philosophy/x.html (last modified Feb. 26, 2002).

506 CARDOZO ARTS & ENTERTAINMENT [Vol. 20:491

Open Source Convention in San Diego, California.”® More re-
cently, Mundie reiterated Microsoft’s objections to the GPL at the
2002 World Congress on Information Technology.” Whatever the
forum, the debate should focus on the facts rather than on myths
or groundless fears.

58 See Shankland, supra note 37.

59 See Bruce Perens, Deciphering the Open-Source War, at http://news.com.com/2010-
1078-855155.html (Mar. 8, 2002).

	Allchin’s Folly: Exploring Some Myths About Open Source Software
	Repository Citation

	tmp.1337621822.pdf.uDyYI

